Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Rev Med Virol ; : e2465, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20243439

ABSTRACT

Monoamine oxidase (MAO) is a membrane-bound mitochondrial enzyme that maintains the steady state of neurotransmitters and other biogenic amines in biological systems through catalytic oxidation and deamination. MAO dysfunction is closely related to human neurological and psychiatric diseases and cancers. However, little is known about the relationship between MAO and viral infections in humans. This review summarises current research on how viral infections participate in the occurrence and development of human diseases through MAO. The viruses discussed in this review include hepatitis C virus, dengue virus, severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, Japanese encephalitis virus, Epstein-Barr virus, and human papillomavirus. This review also describes the effects of MAO inhibitors such as phenelzine, clorgyline, selegiline, M-30, and isatin on viral infectious diseases. This information will not only help us to better understand the role of MAO in the pathogenesis of viruses but will also provide new insights into the treatment and diagnosis of these viral diseases.

2.
Thromb J ; 20(1): 47, 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2002193

ABSTRACT

BACKGROUND: Previous studies demonstrate a reduced risk of thrombosis and mortality with anticoagulant treatment in patients with COVID-19 than in those without anticoagulation treatment. However, an open question regarding the efficacy and safety of therapeutic anticoagulation (T-AC) versus a lower dose, prophylaxis anticoagulation (P-AC) in COVID-19 patients is still controversial. METHODS: We systematically reviewed currently available randomized clinical trials (RCTs) and observational studies (OBs) from January 8, 2019, to January 8, 2022, and compared prophylactic and therapeutic anticoagulant treatment in COVID-19 patients. The primary outcomes were risk of mortality, major bleeding, and the secondary outcomes included venous and arterial thromboembolism. Subgroup analysis was also performed between critically ill and non-critically ill patients with COVID-19 and between patients with higher and lower levels of D-dimer. Sensitivity analysis was performed to decrease the bias and the impact of population heterogeneity. RESULTS: We identified 11 RCTs and 17 OBs fulfilling our inclusion criteria. In the RCTs analyses, there was no statistically significant difference in the relative risk of mortality between COVID-19 patients with T-AC treatment and those treated with P-AC (RR 0.95, 95% CI, 0.78-1.15, P = 0.60). Similar results were also found in the OBs analyses (RR 1.21, 95% CI, 0.98-1.49, P = 0.08). The pooling meta-analysis using a random-effects model combined with effect sizes showed that in the RCTs and OBs analyses, patients with COVID-19 who received T-AC treatment had a significantly higher relative risk of the major bleeding event than those with P-AC treatment in COVID-19 patients (RCTs: RR 1.76, 95% CI, 1.19-2.62, P = 0.005; OBs: RR 2.39, 95% CI, 1.56-3.68, P < 0.0001). Compared with P-AC treatment in COVID-19 patients, patients with T-AC treatment significantly reduced the incidence of venous thromboembolism (RR 0.51, 95% CI, 0.39-0.67, P<0.00001), but it is not associated with arterial thrombosis events (RR 0.97, 95% CI, 0.66-1.42, P = 0.87). The subgroup analysis of OBs shows that the mortality risk significantly reduces in critically ill COVID-19 patients treated with T-AC compared with those with P-AC treatment (RR 0.58, 95% CI, 0.39-0.86, P = 0.007), while the mortality risk significantly increases in non-critically ill COVID-19 patients treated with T-AC (RR 1.56, 95% CI, 1.34-1.80, P < 0.00001). In addition, T-AC treatment does not reduce the risk of mortality in COVID-19 patients with high d-dimer levels in RCTs. Finally, the overall sensitivity analysis after excluding two RCTs studies remains consistent with the previous results. CONCLUSIONS: In our integrated analysis of included RCTs and OBs, there is no significant difference between the mortality of T-AC and P-AC treatment in unselected patients with COVID-19. T-AC treatment in COVID-19 patients significantly reduced the incidence of venous thromboembolism but showed a higher risk of bleeding than those with P-AC treatment. In addition, P-AC treatment was superior to T-AC treatment in non-critically ill COVID-19 patients, the evidence supporting the necessity for T-AC treatment in critically ill COVID-19 patients came only from OBs. TRIAL REGISTRATION: Protocol registration: The protocol was registered at PROSPERO (CRD42021293294).

3.
Biosens Bioelectron ; 198: 113823, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1520727

ABSTRACT

Direct in situ fluorescent enzyme-linked immunosorbent assay (ELISA) is rarely investigated and reported. Herein, a direct in situ high-performance HRP-labeled fluorescent immunoassay platform was constructed. The platform was developed based on a rapid in situ fluorogenic reaction between Polyethyleneimine (PEI) and p-Phenylenediamine (PPD) analogues to generate fluorescent copolymer nanoparticles (FCNPs). The formation mechanism of FCNPs was found to be the oxidation of •OH radicals, which was further proved by nitrogen protection and scavenger of •OH radicals. Meantime, the fluorescence wavelength of FCNPs could be adjusted from 471 to 512 nm by introducing various substitution groups into the PPD structure. Using cardiac troponin I (cTnI) and SARS-CoV-2 nucleocapsid protein (N-protein) as the model antigens, the proposed fluorescent ELISA exhibited a wide dynamic range of 5-180 ng/mL and a low limit of detection (LOD) of 0.19 ng/mL for cTnI, and dynamic range of 0-120 ng/mL and a LOD of 0.33 ng/mL for SARS-CoV-2 N protein, respectively. Noteworthy, the proposed method was successful applied to evaluate the cTnI and SARS-CoV-2 N protein levels in serum with satisfied results. Therefore, the proposed platform paved ways for developing novel fluorescence-based HRP-labeled ELISA technologies and broadening biomarker related clinical diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , Enzyme-Linked Immunosorbent Assay , Horseradish Peroxidase , Humans , Immunoassay , Nucleocapsid Proteins , SARS-CoV-2 , Troponin I
SELECTION OF CITATIONS
SEARCH DETAIL